Explicit Optimal Hardness via Gaussian Stability Results

Author:

De Anindya1,Mossel Elchanan1

Affiliation:

1. University of California, Berkeley

Abstract

The results of Raghavendra [2008] show that assuming Khot’s Unique Games Conjecture [2002], for every constraint satisfaction problem there exists a generic semidefinite program that achieves the optimal approximation factor. This result is existential as it does not provide an explicit optimal rounding procedure nor does it allow to calculate exactly the Unique Games hardness of the problem. Obtaining an explicit optimal approximation scheme and the corresponding approximation factor is a difficult challenge for each specific approximation problem. Khot et al. [2004] established a general approach for determining the exact approximation factor and the corresponding optimal rounding algorithm for any given constraint satisfaction problem. However, this approach crucially relies on results explicitly proving optimal partitions in the Gaussian space. Until recently, Borell’s result [1985] was the only nontrivial Gaussian partition result known. In this article we derive the first explicit optimal approximation algorithm and the corresponding approximation factor using a new result on Gaussian partitions due to Isaksson and Mossel [2012]. This Gaussian result allows us to determine the exact Unique Games Hardness of MAX-3-EQUAL. In particular, our results show that Zwick’s algorithm for this problem achieves the optimal approximation factor and prove that the approximation achieved by the algorithm is ≈ 0.796 as conjectured by Zwick [1998]. We further use the previously known optimal Gaussian partitions results to obtain a new Unique Games Hardness factor for MAX-k-CSP: Using the well-known fact that jointly normal pairwise independent random variables are fully independent, we show that the UGC hardness of Max-k-CSP is ⌈( k +1)/2⌉ 2 k−1 , improving on results of Austrin and Mossel [2009].

Funder

Division of Computing and Communication Foundations

Office of Naval Research

Division of Mathematical Sciences

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Reference21 articles.

1. Balanced max 2-sat might not be the hardest

2. Approximation Resistant Predicates from Pairwise Independence

3. Approximations to Multivariate Normal Orthant Probabilities

4. Benjamini I. Gurel-Gurevich O. and Peled R. 2012. On k-wise independent distributions and Boolean functions. http://arxiv.org/abs/1201.3261. Benjamini I. Gurel-Gurevich O. and Peled R. 2012. On k-wise independent distributions and Boolean functions. http://arxiv.org/abs/1201.3261.

5. Geometric bounds on the Ornstein-Uhlenbeck velocity process

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3