A general buffer scheme for the windows scheduling problem

Author:

Bar-Noy Amotz1,Ladner Richard E.2,Christensen Jacob2,Tamir Tami3

Affiliation:

1. Brooklyn College, Bedford Avenue Brooklyn, NY

2. University of Washington, Seattle, WA

3. The Interdisciplinary Center, Herzliya, Herzliya, Israel

Abstract

Broadcasting is an efficient alternative to unicast for delivering popular on-demand media requests. Broadcasting schemes that are based on windows scheduling algorithms provide a way to satisfy all requests with both low bandwidth and low latency. Consider a system of n pages that need to be scheduled (transmitted) on identical channels an infinite number of times. Time is slotted, and it takes one time slot to transmit each page. In the windows scheduling problem (WS) each page i , 1 ≤ in , is associated with a request window w i . In a feasible schedule for WS, page i must be scheduled at least once in any window of w i time slots. The objective function is to minimize the number of channels required to schedule all the pages. The main contribution of this paper is the design of a general buffer scheme for the windows scheduling problem such that any algorithm for WS follows this scheme. As a result, this scheme can serve as a tool to analyze and/or exhaust all possible WS-algorithms. The buffer scheme is based on modelling the system as a nondeterministic finite state machine in which any directed cycle corresponds to a legal schedule and vice-versa. Since WS is NP-hard, we present some heuristics and pruning-rules for cycle detection that ensure reasonable cycle-search time. By introducing various rules, the buffer scheme can be transformed into deterministic scheduling algorithms. We show that a simple page-selection rule for the buffer scheme provides an optimal schedule to WS for the case where all the w i 's have divisible sizes, and other good schedules for some other general cases. By using an exhaustive-search, we prove impossibility results for other important instances. We also show how to extend the buffer scheme to more generalized environments in which ( i ) pages are arriving and departing on-line, ( ii ) the window constraint has some jitter , and ( iii ) different pages might have different lengths.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Windows Scheduling with Reallocation;ACM Journal of Experimental Algorithmics;2021-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3