ThalamusDB: Approximate Query Processing on Multi-Modal Data

Author:

Jo Saehan1ORCID,Trummer Immanuel1ORCID

Affiliation:

1. Cornell University, Ithaca, NY, USA

Abstract

We introduce ThalamusDB, a novel approximate query processing system that processes complex SQL queries on multi-modal data. ThalamusDB supports SQL queries integrating natural language predicates on visual, audio, and text data. To answer such queries, ThalamusDB exploits a collection of zero-shot models in combination with relational processing. ThalamusDB utilizes deterministic approximate query processing, harnessing the relative efficiency of relational processing to mitigate the computational demands of machine learning inference. For evaluating a natural language predicate, ThalamusDB requests a small number of labels from users. User can specify their preferences on the performance objective regarding the three relevant metrics: approximation error, computation time, and labeling overheads. The ThalamusDB query optimizer chooses optimized plans according to user preferences, prioritizing data processing and requested labels to maximize impact. Experiments with several real-world data sets, taken from Craigslist, YouTube, and Netflix, show that ThalamusDB achieves an average speedup of 35.0x over MindsDB, an exact processing baseline, and outperforms ABAE, a sampling-based method, in 78.9% of cases.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference40 articles.

1. Swarup Acharya Phillip B Gibbons and Viswanath Poosala. 1999. Aqua: a fast decision support systems using approximate query answers. In VLDB. 754--757.

2. Congressional samples for approximate answering of group-by queries

3. BlinkDB

4. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Advances in Neural Information Processing Systems. 1877--1901. arxiv: 2005.14165

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3