Affiliation:
1. Ionian University, Corfu, Greece
2. Hellenic Open University, Patras, Greece
Abstract
Pedagogy has emphasized that physical representations and tangible interactive objects benefit learning especially for young students. There are many tangible hardware platforms for introducing computer programming to children, but there is limited comparative evaluation of them in the context of a formal classroom. In this work, we explore the benefits of learning to code for tangible computers, such as robots and wearable computers, in comparison to programming for the desktop computer. For this purpose, 36 students participated in a within-groups study that involved three types of target computer platform tangibility: (1) desktop, (2) wearable, and (3) robotic. We employed similar blocks-based visual programming environments, and we measured emotional engagement, attitudes, and computer programming performance. We found that students were more engaged by and had a higher intention of learning programming with the robotic rather than the desktop computer. Furthermore, tangible computing platforms, either robot or wearable, did not affect the students’ performance in learning basic computational concepts (e.g., sequence, repeat, and decision). Our findings suggest that computer programming should be introduced through multiple target platforms (e.g., robots, smartphones, wearables) to engage children.
Publisher
Association for Computing Machinery (ACM)
Subject
Education,General Computer Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献