Affiliation:
1. USI Lugano, Lugano, Switzerland
2. Yale University, New Haven, USA
3. University of Chicago, Chicago, USA
Abstract
Quantum networks connect quantum capable nodes in order to achieve capabilities that are impossible only using classical information. Their fundamental unit of communication is the Bell pair, which consists of two entangled quantum bits. Unfortunately, Bell pairs are fragile and difficult to transmit directly, necessitating a network of repeaters, along with software and hardware that can ensure the desired results. Challenging intrinsic features of quantum networks, such as dealing with resource competition, motivate formal reasoning about quantum network protocols. To this end, we developed BellKAT, a novel specification language for quantum networks based upon Kleene algebra.
To cater to the specific needs of quantum networks, we designed an algebraic structure, called BellSKA, which we use as the basis of BellKAT's denotational semantics. BellKAT's constructs describe entanglement distribution rules that allow for modular specification. We give BellKAT a sound and complete equational theory, allowing us to verify network protocols. We provide a prototype tool to showcase the expressiveness of BellKAT and how to optimize and verify networks in practice.
Funder
Hasler Foundation
Swiss National Science Foundation
US Air Force Office of Scientific Research
US National Science Foundation Expedition in Computing
Publisher
Association for Computing Machinery (ACM)