Towards characterizing cloud backend workloads

Author:

Mishra Asit K.1,Hellerstein Joseph L.2,Cirne Walfredo2,Das Chita R.1

Affiliation:

1. The Pennsylvania State University, University Park, PA

2. Google Inc., Mountain View, CA

Abstract

The advent of cloud computing promises highly available, efficient, and flexible computing services for applications such as web search, email, voice over IP, and web search alerts. Our experience at Google is that realizing the promises of cloud computing requires an extremely scalable backend consisting of many large compute clusters that are shared by application tasks with diverse service level requirements for throughput, latency, and jitter. These considerations impact (a) capacity planning to determine which machine resources must grow and by how much and (b) task scheduling to achieve high machine utilization and to meet service level objectives. Both capacity planning and task scheduling require a good understanding of task resource consumption (e.g., CPU and memory usage). This in turn demands simple and accurate approaches to workload classification-determining how to form groups of tasks (workloads) with similar resource demands. One approach to workload classification is to make each task its own workload. However, this approach scales poorly since tens of thousands of tasks execute daily on Google compute clusters. Another approach to workload classification is to view all tasks as belonging to a single workload. Unfortunately, applying such a coarse-grain workload classification to the diversity of tasks running on Google compute clusters results in large variances in predicted resource consumptions. This paper describes an approach to workload classification and its application to the Google Cloud Backend, arguably the largest cloud backend on the planet. Our methodology for workload classification consists of: (1) identifying the workload dimensions; (2) constructing task classes using an off-the-shelf algorithm such as k-means; (3) determining the break points for qualitative coordinates within the workload dimensions; and (4) merging adjacent task classes to reduce the number of workloads. We use the foregoing, especially the notion of qualitative coordinates, to glean several insights about the Google Cloud Backend: (a) the duration of task executions is bimodal in that tasks either have a short duration or a long duration; (b) most tasks have short durations; and (c) most resources are consumed by a few tasks with long duration that have large demands for CPU and memory.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3