Lightweight IO virtualization on MPU enabled microcontrollers

Author:

Paci Francesco1,Brunelli Davide2,Benini Luca3

Affiliation:

1. University of Bologna, Bologna, Italy

2. University of Trento, Trento, Italy

3. University of Bologna, Bologna, Italy and ETHZ, Zürich, Switzerland

Abstract

In the era of the Internet of Things (IoT), millions of devices and embedded platforms based on low-cost and limited resources microcontroller units (MCUs) will be used in continuous operation. Even if over-the-air firmware update is today a common feature, many applications might require not to reboot or to support hardware resource sharing. In such a context stop, update and reboot the platform is unpractical and dynamic loading of new user code is required. This in turn requires mechanisms to protect the MCU hardware resources and the continuously executing system tasks from uncontrolled perturbation caused by new user code being dynamically loaded. In this paper, we present a framework which provides a lightweight virtualization of the IO and platform peripherals and permits the dynamic loading of new user code. The aim of this work is to support critical isolation features typical of virtualization-ready CPUs on low-cost low-power microcontrollers with no MMU (Memory Management Unit), IOMMU or dedicated instruction extensions. Our approach only leverages the Memory Protection Unit (MPU), which is generally available in all ARM Cortex-M3 and Cortex-M4 microcontrollers. Experimental evaluations demonstrate not only the feasibility, but also the really low impact of the proposed framework in terms of memory requirements and runtime overhead.

Publisher

Association for Computing Machinery (ACM)

Subject

Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ShieLD: Shielding Cross-Zone Communication Within Limited-Resourced IoT Devices Running Vulnerable Software Stack;IEEE Transactions on Dependable and Secure Computing;2023-03-01

2. In-depth analysis and open challenges of Mist Computing;Journal of Cloud Computing;2022-11-19

3. uTango: An Open-Source TEE for IoT Devices;IEEE Access;2022

4. Virtualization on TrustZone-Enabled Microcontrollers? Voilà!;2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS);2019-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3