Resource Allocation for Heterogeneous Computing Tasks in Wirelessly Powered MEC-enabled IIOT Systems

Author:

Hu Yixiang1ORCID,Deng Xiaoheng2ORCID,Zhu Congxu1ORCID,Chen Xuechen1ORCID,Chi Laixin1ORCID

Affiliation:

1. Central South University, Changsha, Hunan, China

2. Jinchuan Nickel Cobalt Research and Design Academy Institute, Jinchang, Gansu, China and Central South University, Changsha, Hunan, China

Abstract

Integrating wireless power transfer with mobile edge computing (MEC) has become a powerful solution for increasingly complicated and dynamic industrial Internet of Things (IIOT) systems. However, the traditional approaches overlooked the heterogeneity of the tasks and the dynamic arrival of energy in wirelessly powered MEC-enabled IIOT systems. In this article, we formulate the problem of maximizing the product of the computing rate and the task execution success rate for heterogeneous tasks. To manage energy harvesting adaptively and select appropriate computing modes, we devise an online resource allocation and computation offloading approach based on deep reinforcement learning. We decompose this approach into two stages: an offloading decision stage and a stopping decision stage. The purpose of the offloading decision stage is to select the computing mode and dynamically allocate the computation round length for each task after learning from the channel state information and the task experience. This stage allows the system to support heterogeneous computing tasks. Subsequently, in the second stage, we adaptively adjust the number of fading slots devoted to energy harvesting in each round in accordance with the status of each fading slot. Simulation results show that our proposed algorithm can better allocate resources for heterogeneous tasks and reduce the ratio of failed tasks and energy consumption when compared with several existing algorithms.

Funder

National Natural Science Foundation of China

Opening Project of State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization

Fundamental Research Funds for the Central Universities of Central South University

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3