Playing Mastermind With Many Colors

Author:

Doerr Benjamin1,Doerr Carola2,Spöhel Reto1,Thomas Henning3

Affiliation:

1. Max-Planck-Institut für Informatik

2. Max-Planck-Institut für Informatik and Université Paris Diderot

3. ETH Zürich, Zürich, Switzerland

Abstract

We analyze the general version of the classic guessing game Mastermind with n positions and k colors. Since the case kn 1 − ε , ε > 0 a constant, is well understood, we concentrate on larger numbers of colors. For the most prominent case k = n , our results imply that Codebreaker can find the secret code with O ( n log log n ) guesses. This bound is valid also when only black answer pegs are used. It improves the O ( n log n ) bound first proven by Chvátal. We also show that if both black and white answer pegs are used, then the O ( n log log n ) bound holds for up to n 2 log log n colors. These bounds are almost tight, as the known lower bound of Ω( n ) shows. Unlike for kn 1 − ε , simply guessing at random until the secret code is determined is not sufficient. In fact, we show that an optimal nonadaptive strategy (deterministic or randomized) needs Θ( n log n ) guesses.

Funder

Agence Nationale de la Recherche

Feodor Lynen Research Fellowship for Postdoctoral Researchers of the Alexander von Humboldt Foundation

Google Fellowship

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Playing Guess Who with your kids: Code-word strategy against adversaries;Theoretical Computer Science;2024-11

2. Playing Mastermind with Wordle-like Feedback;The American Mathematical Monthly;2024-02-22

3. Mastermind with a linear number of queries;Combinatorics, Probability and Computing;2023-11-08

4. Optimal strategies for the static black-peg AB game with two and three pegs;Discrete Mathematics, Algorithms and Applications;2023-07-22

5. A Gentle Introduction to Theory (for Non-Theoreticians);Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3