Understanding Intrinsic Diversity in Web Search

Author:

Raman Karthik1,Bennett Paul N.1,Collins-Thompson Kevyn1

Affiliation:

1. Microsoft Research

Abstract

Current research on Web search has focused on optimizing and evaluating single queries. However, a significant fraction of user queries are part of more complex tasks [Jones and Klinkner 2008] which span multiple queries across one or more search sessions [Liu and Belkin 2010; Kotov et al. 2011]. An ideal search engine would not only retrieve relevant results for a user's particular query but also be able to identify when the user is engaged in a more complex task and aid the user in completing that task [Morris et al. 2008; Agichtein et al. 2012]. Toward optimizing whole-session or task relevance, we characterize and address the problem of intrinsic diversity (ID) in retrieval [Radlinski et al. 2009], a type of complex task that requires multiple interactions with current search engines. Unlike existing work on extrinsic diversity [Carbonell and Goldstein 1998; Zhai et al. 2003; Chen and Karger 2006] that deals with ambiguity in intent across multiple users, ID queries often have little ambiguity in intent but seek content covering a variety of aspects on a shared theme. In such scenarios, the underlying needs are typically exploratory, comparative, or breadth-oriented in nature. We identify and address three key problems for ID retrieval: identifying authentic examples of ID tasks from post-hoc analysis of behavioral signals in search logs; learning to identify initiator queries that mark the start of an ID search task; and given an initiator query, predicting which content to prefetch and rank.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference77 articles.

1. Search, interrupted

2. Diversifying search results

3. Peter Bailey Liwei Chen Scott Grosenick Li Jiang Yan Li Paul Reinholdtsen Charles Salada Haidong Wang and Sandy Wong. 2012. User task understanding: A web search engine perspective. http://research.microsoft.com/apps/-pubs/default.aspx?id=180594. Peter Bailey Liwei Chen Scott Grosenick Li Jiang Yan Li Paul Reinholdtsen Charles Salada Haidong Wang and Sandy Wong. 2012. User task understanding: A web search engine perspective. http://research.microsoft.com/apps/-pubs/default.aspx?id=180594.

4. Evaluating whole-page relevance

5. Peter L. Bartlett Michael I. Jordan and Jon M. Mcauliffe. 2004. Large margin classifiers: Convex loss low noise and convergence rates. In Advances in Neural Information Processing Systems 16. MIT Press 1173--1180. DOI: http://papers.nips.cc/paper/2416-large-margin-classifiers-convex-loss-low- noise-and-convergence-rates.pdf. Peter L. Bartlett Michael I. Jordan and Jon M. Mcauliffe. 2004. Large margin classifiers: Convex loss low noise and convergence rates. In Advances in Neural Information Processing Systems 16. MIT Press 1173--1180. DOI: http://papers.nips.cc/paper/2416-large-margin-classifiers-convex-loss-low- noise-and-convergence-rates.pdf.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Result Diversification in Search and Recommendation: A Survey;IEEE Transactions on Knowledge and Data Engineering;2024-10

2. Diversity-aware strategies for static index pruning;Information Processing & Management;2024-09

3. Cognitively Biased Users Interacting with Algorithmically Biased Results in Whole-Session Search on Debated Topics;Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval;2024-08-02

4. Spontaneous Learning Environments: Manipulating Readability & Cohesion in Support of Searching as Learning;Proceedings of the Association for Information Science and Technology;2023-10

5. Active tag recommendation for interactive entity search: Interaction effectiveness and retrieval performance;Information Processing & Management;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3