Memory-Constrained Vectorization and Scheduling of Dataflow Graphs for Hybrid CPU-GPU Platforms

Author:

Lin Shuoxin1ORCID,Wu Jiahao1,Bhattacharyya Shuvra S.2

Affiliation:

1. University of Maryland, MD, USA

2. University of Maryland and Tampere University of Technology

Abstract

The increasing use of heterogeneous embedded systems with multi-core CPUs and Graphics Processing Units (GPUs) presents important challenges in effectively exploiting pipeline, task, and data-level parallelism to meet throughput requirements of digital signal processing applications. Moreover, in the presence of system-level memory constraints, hand optimization of code to satisfy these requirements is inefficient and error prone and can therefore, greatly slow down development time or result in highly underutilized processing resources. In this article, we present vectorization and scheduling methods to effectively exploit multiple forms of parallelism for throughput optimization on hybrid CPU-GPU platforms, while conforming to system-level memory constraints. The methods operate on synchronous dataflow representations, which are widely used in the design of embedded systems for signal and information processing. We show that our novel methods can significantly improve system throughput compared to previous vectorization and scheduling approaches under the same memory constraints. In addition, we present a practical case-study of applying our methods to significantly improve the throughput of an orthogonal frequency division multiplexing receiver system for wireless communications.

Funder

National Science Foundation

Laboratory for Telecommunication Sciences

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3