Symbolic Bisimulation for Quantum Processes

Author:

Feng Yuan1,Deng Yuxin2,Ying Mingsheng1

Affiliation:

1. University of Technology, Sydney, Australia, and Tsinghua University, China

2. Shanghai Jiao Tong University, China

Abstract

With the previous notions of bisimulation presented in the literature, to check if two quantum processes are bisimilar, we have to instantiate their free quantum variables with arbitrary quantum states, and verify the bisimilarity of the resulting configurations. This makes checking bisimilarity infeasible from an algorithmic point of view, because quantum states constitute a continuum. In this article, we introduce a symbolic operational semantics for quantum processes directly at the quantum operation level, which allows us to describe the bisimulation between quantum processes without resorting to quantum states. We show that the symbolic bisimulation defined here is equivalent to the open bisimulation for quantum processes in previous work, when strong bisimulations are considered. An algorithm for checking symbolic ground bisimilarity is presented. We also give a modal characterisation for quantum bisimilarity based on an extension of Hennessy-Milner logic to quantum processes.

Funder

Australian Research Council

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Bisimilarity via Barbs and Contexts: Curbing the Power of Non-deterministic Observers;Proceedings of the ACM on Programming Languages;2024-01-05

2. The Way We Were: Structural Operational Semantics Research in Perspective;Electronic Proceedings in Theoretical Computer Science;2023-09-14

3. Compositional equivalences based on open pNets;Journal of Logical and Algebraic Methods in Programming;2023-02

4. Prediction of battery capacity based on improved model of support vector regression;Journal of Physics: Conference Series;2023-02-01

5. Branching Bisimulation Semantics for Quantum Processes;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3