Break Out of a Pigeonhole: A Unified Framework for Examining Miscalibration, Bias, and Stereotype in Recommender Systems

Author:

Ahn Yongsu1ORCID,Lin Yu-Ru2ORCID

Affiliation:

1. University of Pittsburgh, Pittsburgh, United States

2. University of Pittsburgh, Pittsburgh, USA

Abstract

Despite the benefits of personalizing items and information tailored to users’ needs, it has been found that recommender systems tend to introduce biases that favor popular items or certain categories of items and dominant user groups. In this study, we aim to characterize the systematic errors of a recommendation system and how they manifest in various accountability issues, such as stereotypes, biases, and miscalibration. We propose a unified framework that distinguishes the sources of prediction errors into a set of key measures that quantify the various types of system-induced effects, at both the individual and collective levels. Based on our measuring framework, we examine the most widely adopted algorithms in the context of movie recommendation. Our research reveals three important findings: (1) Differences between algorithms: recommendations generated by simpler algorithms tend to be more stereotypical but less biased than those generated by more complex algorithms. (2) Disparate impact on groups and individuals: system-induced biases and stereotypes have a disproportionate effect on atypical users and minority groups (e.g., women and older users). (3) Mitigation opportunity: using structural equation modeling, we identify the interactions between user characteristics (typicality and diversity), system-induced effects, and miscalibration. We further investigate the possibility of mitigating system-induced effects by oversampling underrepresented groups and individuals, which was found to be effective in reducing stereotypes and improving recommendation quality. Our research is the first systematic examination of not only system-induced effects and miscalibration but also the stereotyping issue in recommender systems.

Funder

AFOSR, ONR, Minerva, NSF

Pitt Cyber Institute’s PCAG

University of Pittsburgh Center for Research Computing, RRID:SCR

NIH

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3