PROV 2R

Author:

Stamatogiannakis Manolis1ORCID,Athanasopoulos Elias2,Bos Herbert1,Groth Paul3

Affiliation:

1. Vrije Universiteit Amsterdam, The Netherlands

2. University of Cyprus, Nicosia, Cyprus

3. Elsevier Labs, The Netherlands

Abstract

Information produced by Internet applications is inherently a result of processes that are executed locally. Think of a web server that makes use of a CGI script, or a content management system where a post was first edited using a word processor. Given the impact of these processes to the content published online, a consumer of that information may want to understand what those impacts were. For example, understanding from where text was copied and pasted to make a post, or if the CGI script was updated with the latest security patches, may all influence the confidence on the published content. Capturing and exposing this information provenance is thus important to ascertaining trust to online content. Furthermore, providers of internet applications may wish to have access to the same information for debugging or audit purposes. For processes following a rigid structure (such as databases or workflows), disclosed provenance systems have been developed that efficiently and accurately capture the provenance of the produced data. However, accurately capturing provenance from unstructured processes, for example, user-interactive computing used to produce web content, remains a problem to be tackled. In this article, we address the problem of capturing and exposing provenance from unstructured processes. Our approach, called PROV 2R ( PROV enance R ecord and R eplay) is composed of two parts: (a) the decoupling of provenance analysis from its capture; and (b) the capture of high-fidelity provenance from unmodified programs. We use techniques originating in the security and reverse engineering communities, namely, record and replay and taint tracking . Taint tracking fundamentally addresses the data provenance problem but is impractical to apply at runtime due to extremely high overhead. With a number of case studies, we demonstrate that PROV 2R enables the use of taint analysis for high-fidelity provenance capture, while keeping the runtime overhead at manageable levels. In addition, we show how captured information can be represented using the W3C PROV provenance model for exposure on the Web.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ALchemist: Fusing Application and Audit Logs for Precise Attack Provenance without Instrumentation;Proceedings 2021 Network and Distributed System Security Symposium;2021

2. PANDAcap;Proceedings of the 13th European workshop on Systems Security;2020-04-23

3. Mal-Flux: Rendering hidden code of packed binary executable;Digital Investigation;2019-03

4. Provenance of Dynamic Adaptations in User-Steered Dataflows;Lecture Notes in Computer Science;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3