1. Ai.type. https://www.androidauthority.com/ai-type-data-exposed-820431/.
2. Aono, Y., Hayashi, T., Trieu Phong, L., and Wang, L. Scalable and secure logistic regression via homomorphic encryption. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy(2016), ACM, pp. 142--144.
3. Auto MPG data set.https://archive.ics.uci.edu/ml/datasets/auto+mpg, 1993.Online; accessed 29 July 2019.
4. Barbosa, M., Catalano, D., and Fiore, D. Labeled homomorphic encryption. In Computer Security -- ESORICS 2017(Cham, 2017), S. N. Foley, D. Gollmann, and E. Snekkenes, Eds., Springer International Publishing, pp. 146--166.
5. Bogdanov, D., Kamm, L., Laur, S., and Sokk, V. Rmind: A tool for cryptograph-ically secure statistical analysis. IEEE Transactions on Dependable and Secure Computing 15, 3 (May 2018), 481--495.