1. Z. Cai, M. J. Saberian, and N. Vasconcelos. Learning complexity-aware cascades for deep pedestrian detection.CoRR, abs/1507.05348, 2015.
2. L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini. Origami: A convolutional network accelerator. InProceedings of the 25th Edition on Great Lakes Symposium on VLSI, GLSVLSI '15, pages 199--204, New York, NY, USA, 2015. ACM.
3. Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne. Eyeriss: An Energy-Efficient Reconfigurable Accelerato for Deep Convolutional Neural Networks. InIEEE International Solid-State Circuits Conference, ISSCC 2016, Digest of Technical Papers, 2016.
4. S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN: Efficient primitives for deep learning.arXiv preprint arXiv:1410.0759, 2014.
5. W. Dally. High-performance hardware for machine learning. https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf.