Language Models for Online Depression Detection: A Review and Benchmark Analysis on Remote Interviews

Author:

Qin Ruiyang1ORCID,Cook Ryan2ORCID,Yang Kai2ORCID,Abbasi Ahmed2ORCID,Dobolyi David3ORCID,Seyedi Salman4ORCID,Griner Emily4ORCID,Kwon Hyeokhyen4ORCID,Cotes Robert4ORCID,Jiang Zifan5ORCID,Clifford Gari56ORCID

Affiliation:

1. Computer Science, University of Notre Dame, Notre Dame, United States

2. IT, Analytics, and Operations, University of Notre Dame, Notre Dame, United States

3. University of Colorado Boulder, Boulder, United States

4. Emory University, Atlanta, United States

5. Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States

6. Biomedical Informatics, Emory University, Atlanta, United States

Abstract

The use of machine learning (ML) to detect depression in online settings has emerged as an important health and wellness use case. In particular, the use of deep learning methods for depression detection from textual content posted on social media has garnered considerable attention. Conversely, there has been relatively limited evaluation of depression detection in clinical environments involving text generated from remote interviews. In this research, we review state-of-the-art feature-based ML, deep learning, and large language models for depression detection. We use a multi-dimensional analysis framework to benchmark various language models on a novel testbed comprising speech-to-text transcriptions of remote interviews. Our framework considers the impact of different transcription types and interview segments on depression detection performance. Finally, we summarize the key trends and takeaways from the review and benchmark evaluation and provide suggestions to guide the design of future detection methods.

Publisher

Association for Computing Machinery (ACM)

Reference127 articles.

1. Data Science for Social Good

2. Ahmed Abbasi, Jeffrey Parsons, Gautam Pant, Olivia R Liu Sheng, and Suprateek Sarker. 2024. Pathways for Design Research on Artificial Intelligence. Information Systems Research(2024).

3. Rashi Aggarwal, Richard Balon, Eugene V Beresin, John Coverdale, Mary K Morreale, Anthony PS Guerrero, Alan K Louie, and Adam M Brenner. 2022. Addressing psychiatry workforce needs: where are we now?Academic Psychiatry 46, 4 (2022), 407–409.

4. Tuka Al Hanai Mohammad M Ghassemi and James R Glass. 2018. Detecting Depression with Audio/Text Sequence Modeling of Interviews.. In Interspeech. 1716–1720.

5. Luna Ansari, Shaoxiong Ji, Qian Chen, and Erik Cambria. 2022. Ensemble hybrid learning methods for automated depression detection. IEEE Transactions on Computational Social Systems (2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3