On Optimizing Transaction Fees in Bitcoin using AI: Investigation on Miners Inclusion Pattern

Author:

Tedeschi Enrico1ORCID,Nordmo Tor-Arne S.1ORCID,Johansen Dag1ORCID,Johansen Håvard D.1ORCID

Affiliation:

1. UiT The Arctic University of Norway

Abstract

The transaction-rate bottleneck built into popular proof-of-work (PoW)-based cryptocurrencies, like Bitcoin and Ethereum, leads to fee markets where transactions are included according to a first-price auction for block space. Many attempts have been made to adjust and predict the fee volatility, but even well-formed transactions sometimes experience unexpected delays and evictions unless a substantial fee is offered. In this article, we propose a novel transaction inclusion model that describes the mechanisms and patterns governing miners decisions to include individual transactions in the Bitcoin system. Using this model we devise a Machine Learning (ML) approach to predict transaction inclusion. We evaluate our predictions method using historical observations of the Bitcoin network from a five month period that includes more than 30 million transactions and 120 million entries. We find that our Machine Learning (ML) model can predict fee volatility with an accuracy of up to 91%. Our findings enable Bitcoin users to improve their fee expenses and the approval time for their transactions.

Funder

The Norwegian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference55 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals PeteWarden MartinWattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). Retrieved April 2021 from https://www.tensorflow.org/. Software available from tensorflow.org

2. BAR fault tolerance for cooperative services

3. Hijacking Bitcoin: Routing Attacks on Cryptocurrencies

4. Tom Augspurger, Chris Bartak, Phillip Cloud, Andy Hayden, Stephan Hoyer, Wes McKinney, Jeff Reback, Chang She, Masaaki Horikoshi, Joris Van den Bossche, et al. 2012. Pandas: Python Data Analysis Library. software v0.21.0. Pandas community. Retrieved from http://pandas.pydata.org/.

5. Data Mining

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3