Input-sensitive profiling

Author:

Coppa Emilio1,Demetrescu Camil1,Finocchi Irene1

Affiliation:

1. Sapienza University of Rome, Rome, Italy

Abstract

In this paper we present a profiling methodology and toolkit for helping developers discover hidden asymptotic inefficiencies in the code. From one or more runs of a program, our profiler automatically measures how the performance of individual routines scales as a function of the input size, yielding clues to their growth rate. The output of the profiler is, for each executed routine of the program, a set of tuples that aggregate performance costs by input size. The collected profiles can be used to produce performance plots and derive trend functions by statistical curve fitting or bounding techniques. A key feature of our method is the ability to automatically measure the size of the input given to a generic code fragment: to this aim, we propose an effective metric for estimating the input size of a routine and show how to compute it efficiently. We discuss several case studies, showing that our approach can reveal asymptotic bottlenecks that other profilers may fail to detect and characterize the workload and behavior of individual routines in the context of real applications. To prove the feasibility of our techniques, we implemented a Valgrind tool called aprof and performed an extensive experimental evaluation on the SPEC CPU2006 benchmarks. Our experiments show that aprof delivers comparable performance to other prominent Valgrind tools, and can generate informative plots even from single runs on typical workloads for most algorithmically-critical routines.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Resource Bounds with Static Analysis and Bayesian Inference;Proceedings of the ACM on Programming Languages;2024-06-20

2. Enhancing Performance Bug Prediction Using Performance Code Metrics;Proceedings of the 21st International Conference on Mining Software Repositories;2024-04-15

3. The CodeSparks Framework – Augmenting Source Code with Glyph-based Visualizations;Science of Computer Programming;2023-08

4. The Case for Performance Interfaces for Hardware Accelerators;Proceedings of the 19th Workshop on Hot Topics in Operating Systems;2023-06-22

5. Performance Bug Analysis and Detection for Distributed Storage and Computing Systems;ACM Transactions on Storage;2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3