Affiliation:
1. Indiana University, USA
2. University of Freiburg, Germany
3. University of Edinburgh, UK
Abstract
C#, Dart, Pyret, Racket, TypeScript, VB: many recent languages integrate dynamic and static types via gradual typing. We systematically develop three calculi for gradual typing and the relations between them, building on and strengthening previous work. The calculi are: λB, based on the blame calculus of Wadler and Findler (2009); λC, inspired by the coercion calculus of Henglein (1994); λS inspired by the space-efficient calculus of Herman, Tomb, and Flanagan (2006) and the threesome calculus of Siek and Wadler (2010). While λB is little changed from previous work, λC and λS are new. Together, λB, λC, and λS provide a coherent foundation for design, implementation, and optimisation of gradual types. We define translations from λB to λC and from λC to λS. Much previous work lacked proofs of correctness or had weak correctness criteria; here we demonstrate the strongest correctness criterion one could hope for, that each of the translations is fully abstract. Each of the calculi reinforces the design of the others: λC has a particularly simple definition, and the subtle definition of blame safety for λB is justified by the simple definition of blame safety for λC. Our calculus λS is implementation-ready: the first space-efficient calculus that is both straightforward to implement and easy to understand. We give two applications: first, using full abstraction from λC to λS to validate the challenging part of full abstraction between λB and λC; and, second, using full abstraction from λB to λS to easily establish the Fundamental Property of Casts, which required a custom bisimulation and six lemmas in earlier work.
Funder
Microsoft Research
National Science Foundation
Engineering and Physical Sciences Research Council
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. How Profilers Can Help Navigate Type Migration;Proceedings of the ACM on Programming Languages;2023-10-16
2. GTP Benchmarks for Gradual Typing Performance;Proceedings of the 2023 ACM Conference on Reproducibility and Replicability;2023-06-27
3. Blame and coercion: Together again for the first time;Journal of Functional Programming;2021
4. Complete monitors for gradual types;Proceedings of the ACM on Programming Languages;2019-10-10
5. Gradual typing: a new perspective;Proceedings of the ACM on Programming Languages;2019-01-02