A Machine-Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis

Author:

Jeon Minseok1,Jeong Sehun1ORCID,Cha Sungdeok1,Oh Hakjoo1

Affiliation:

1. Korea University, Republic of Korea

Abstract

We present a new machine-learning algorithm with disjunctive model for data-driven program analysis. One major challenge in static program analysis is a substantial amount of manual effort required for tuning the analysis performance. Recently, data-driven program analysis has emerged to address this challenge by automatically adjusting the analysis based on data through a learning algorithm. Although this new approach has proven promising for various program analysis tasks, its effectiveness has been limited due to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular disjunctive, program properties. To overcome this shortcoming, this article presents a new disjunctive model for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses Boolean formulas over atomic features and therefore is able to express nonlinear combinations of program properties. A key technical challenge is to efficiently determine a set of good Boolean formulas, as brute-force search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns Boolean formulas. We show the effectiveness and generality of our algorithm with two static analyzers: context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results show that our automated technique significantly improves the performance of the state-of-the-art techniques including ones hand-crafted by human experts.

Funder

Samsung Research Funding 8 Incubation Center of Samsung Electronics

Institute for Information 8 communications Technology Promotio

Korea governmen

Self-Learning Cyber Immune Technology Development

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Falcon: A Fused Approach to Path-Sensitive Sparse Data Dependence Analysis;Proceedings of the ACM on Programming Languages;2024-06-20

2. Generic Sensitivity: Generics-Guided Context Sensitivity for Pointer Analysis;IEEE Transactions on Software Engineering;2024-05

3. Learning Abstraction Selection for Bayesian Program Analysis;Proceedings of the ACM on Programming Languages;2024-04-29

4. Dataflow Analysis-Inspired Deep Learning for Efficient Vulnerability Detection;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-02-06

5. Precise Data-Driven Approximation for Program Analysis via Fuzzing;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3