Graph Augmentation Empowered Contrastive Learning for Recommendation

Author:

Xu Lixiang1ORCID,Liu Yusheng1ORCID,Xu Tong2ORCID,Chen Enhong2ORCID,Tang Yuanyan3ORCID

Affiliation:

1. School of Artificial Intelligence and Big Data, Hefei University, China

2. State Key Laboratory of Cognitive Intelligence, School of Computer Science and Technology, University of Science and Technology of China, China

3. Zhuhai UM Science and Technology Research Institute, FST University of Macau, China

Abstract

The application of contrastive learning (CL) to collaborative filtering (CF) in recommender systems has achieved remarkable success. CL-based recommendation models mainly focus on creating multiple augmented views by employing different graph augmentation methods and utilizing these views for self-supervised learning. However, current CL methods for recommender systems usually struggle to fully address the problem of noisy data. To address this problem, we propose the G raph A ugmentation E mpowered C ontrastive L earning (GAECL) for recommendation framework, which uses graph augmentation based on topological and semantic dual adaptation and global co-modeling via structural optimization to co-create contrasting views for better augmentation of the CF paradigm. Specifically, we strictly filter out unimportant topologies by reconstructing the adjacency matrix and mask unimportant attributes in nodes according to the PageRank centrality principle to generate an augmented view that filters out noisy data. Additionally, GAECL achieves global collaborative modeling through structural optimization and generates another augmented view based on the PageRank centrality principle. This helps to filter the noisy data while preserving the original semantics of the data for more effective data augmentation. Extensive experiments are conducted on five datasets to demonstrate the superior performance of our model over various recommendation models.

Publisher

Association for Computing Machinery (ACM)

Reference63 articles.

1. Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems 30, 1-7 (1998), 107–117.

2. Theoretical foundations of t-sne for visualizing high-dimensional clustered data;Tony Cai T;The Journal of Machine Learning Research,2022

3. Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation. arXiv preprint arXiv:2302.08191 (2023).

4. Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach

5. Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In International conference on machine learning, Vol. 119. PMLR, 1597–1607.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3