Deep Scalable Supervised Quantization by Self-Organizing Map

Author:

Wang Min1,Zhou Wengang1,Tian Qi2,Li Houqiang1

Affiliation:

1. University of Science and Technology of China, Hefei, China

2. Huawei Noah’s Ark Lab; University of Texas at San Antonio, San Antonio, Texas

Abstract

Approximate Nearest Neighbor (ANN) search is an important research topic in multimedia and computer vision fields. In this article, we propose a new deep supervised quantization method by Self-Organizing Map to address this problem. Our method integrates the Convolutional Neural Networks and Self-Organizing Map into a unified deep architecture. The overall training objective optimizes supervised quantization loss as well as classification loss. With the supervised quantization objective, we minimize the differences on the maps between similar image pairs and maximize the differences on the maps between dissimilar image pairs. By optimization, the deep architecture can simultaneously extract deep features and quantize the features into suitable nodes in self-organizing map. To make the proposed deep supervised quantization method scalable for large datasets, instead of constructing a larger self-organizing map, we propose to divide the input space into several subspaces and construct self-organizing map in each subspace. The self-organizing maps in all the subspaces implicitly construct a large self-organizing map, which costs less memory and training time than directly constructing a self-organizing map with equal size. The experiments on several public standard datasets prove the superiority of our approaches over the existing ANN search methods. Besides, as a by-product, our deep architecture can be directly applied to visualization with little modification, and promising performance is demonstrated in the experiments.

Funder

Young Elite Scientists Sponsorship Program By CAST

NSFC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weakly Supervised Hashing with Reconstructive Cross-modal Attention;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-07-12

2. Machine Learning Modeling of Water Use Patterns in Small Disadvantaged Communities;Water;2021-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3