Stealth Updates of Visual Information by Leveraging Change Blindness and Computational Visual Morphing

Author:

Kasahara Shunichi1,Takada Kazuma1

Affiliation:

1. Sony Computer Science Laboratories, Inc., Higashigotanda, Shinagawa-ku, Tokyo, Japan

Abstract

We present an approach for covert visual updates by leveraging change blindness with computationally generated morphed images. To clarify the design parameters for intentionally suppressing change detection with morphing visuals, we investigated the visual change detection in three temporal behaviors: visual blank, eye-blink, and step-sequential changes. The results showed a robust trend of change blindness with a blank of more than 33.3 ms and with eye blink. Our sequential change study revealed that participants did not recognize changes until an average of 57% morphing toward another face in small change steps. In addition, changes went unnoticed until the end of morphing in more than 10% of all trials. Our findings should contribute to the design of covert visual updates without consuming users’ attention by leveraging change blindness with computational visual morphing.

Funder

JST Moonshot R&D Program

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Reference42 articles.

1. Piotr D. Adamczyk and Brian P. Bailey. 2004. If not now when? The effects of interruption at different moments within task execution. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI’04) . Association for Computing Machinery New York NY 271–278. https://doi.org/10.1145/985692.985727

2. Individual differences in change blindness are predicted by the strength and stability of visual representations;Andermane Nora;Neurosci. Conscious.,2019

3. The role of iconic memory in change-detection tasks;Becker M. W.;Perception,2000

4. Subliminal reorientation and repositioning in immersive virtual environments using saccadic suppression;Bolte Benjamin;IEEE Trans. Vis. Comput. Graph.,2015

5. Andrew Brock Jeff Donahue and Karen Simonyan. 2018. Large scale GAN training for high fidelity natural image synthesis. Retrieved from https://arxiv.org/abs/1809.11096.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artistic Image Enhancement Based on Iterative Contrastive Learning;2024 3rd International Conference on Sentiment Analysis and Deep Learning (ICSADL);2024-03-13

2. Human Latent Metrics: Perceptual and Cognitive Response Correlates to Distance in GAN Latent Space for Facial Images;ACM Symposium on Applied Perception 2022;2022-09-22

3. Dynamic Appearance Augmentation Method that Enables Easy Prototyping of Masks for Performance;Augmented Humans 2022;2022-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3