Carbon

Author:

Kumar Sanjeev1,Hughes Christopher J.1,Nguyen Anthony1

Affiliation:

1. Intel Corp., Santa Clara, CA

Abstract

Chip multiprocessors (CMPs) are now commonplace, and the number of cores on a CMP is likely to grow steadily. However, in order to harness the additional compute resources of a CMP, applications must expose their thread-level parallelism to the hardware. One common approach to doing this is to decompose a program into parallel "tasks" and allow an underlying software layer to schedule these tasks to different threads. Software task scheduling can provide good parallel performance as long as tasks are large compared to the software overheads. We examine a set of applications from an important emerging domain: Recognition, Mining, and Synthesis (RMS). Many RMS applications are compute-intensive and have abundant thread-level parallelism, and are therefore good targets for running on a CMP. However, a significant number have small tasks for which software task schedulers achieve only limited parallel speedups. We propose Carbon, a hardware technique to accelerate dynamic task scheduling on scalable CMPs. Carbon has relatively simple hardware, most of which can be placed far from the cores. We compare Carbon to some highly tuned software task schedulers for a set of RMS benchmarks with small tasks. Carbon delivers significant performance improvements over the best software scheduler: on average for 64 cores, 68% faster on a set of loop-parallel benchmarks, and 109% faster on aset of task-parallel benchmarks.

Publisher

Association for Computing Machinery (ACM)

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HASIIL: Hardware-Assisted Scheduling to Improve IPC Latency in Linux;Proceedings of the 21st ACM International Conference on Computing Frontiers;2024-05-07

2. Hardware Assist for Linux IPC on an FPGA Platform;Proceedings of the 21st ACM International Conference on Computing Frontiers;2024-05-07

3. HW-FUTEX: Hardware-Assisted Futex Syscall;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2024-01

4. Enabling HW-Based Task Scheduling in Large Multicore Architectures;IEEE Transactions on Computers;2024-01

5. Runtime support for automatic placement of workloads on heterogeneous processors;2023 IEEE 16th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC);2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3