Effective and Efficient PageRank-based Positioning for Graph Visualization

Author:

Zhang Shiqi1ORCID,Yang Renchi2ORCID,Xiao Xiaokui3ORCID,Yan Xiao4ORCID,Tang Bo4ORCID

Affiliation:

1. National University of Singapore & Southern University of Science and Technology, Singapore, Singapore

2. Hong Kong Baptist University, Hong Kong, China

3. National University of Singapore, Singapore, Singapore

4. Southern University of Science and Technology, Shenzhen, China

Abstract

Graph visualization is a vital component in many real-world applications (e.g., social network analysis, web mining, and bioinformatics) that enables users to unearth crucial insights from complex data. Lying in the core of graph visualization is the node distance measure, which determines how the nodes are placed on the screen. A favorable node distance measure should be informative in reflecting the full structural information between nodes and effective in optimizing visual aesthetics. However, existing node distance measures yield sub-par visualization quality as they fall short of these requirements. Moreover, most existing measures are computationally inefficient, incurring a long response time when visualizing large graphs. To overcome such deficiencies, we propose a new node distance measure, PDist, geared towards graph visualization by exploiting a well-known node proximity measure,personalized PageRank. Moreover, we propose an efficient algorithm Tau-Push for estimating PDist under both single- and multi-level visualization settings. With several carefully-designed techniques, TauPush offers non-trivial theoretical guarantees for estimation accuracy and computation complexity. Extensive experiments show that our proposal significantly outperforms 13 state-of-the-art graph visualization solutions on 12 real-world graphs in terms of both efficiency and effectiveness (including aesthetic criteria and user feedback). In particular, our proposal can interactively produce satisfactory visualizations within one second for billion-edge graphs.

Funder

Shenzhen Science and Technology Innovation Commission

A*STAR, Singapore

Guangdong Basic and Applied Basic Research Foundation

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Algorithms for Personalized PageRank Computation: A Survey;IEEE Transactions on Knowledge and Data Engineering;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3