A Stable Idle Time Detection Platform for Real I/O Workloads

Author:

Lu Yen-Yu1ORCID,Wu Chin-Hsien2ORCID,Li Shih-Jen2ORCID,Lee Cheng-Tze2ORCID,Wu Cheng-Yen2ORCID

Affiliation:

1. Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

2. Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei Taiwan

Abstract

It is important to utilize the idle time of a workload to improve the system performance. In the paper, we will explore multiple idle time detection methods to predict the idle time of the real I/O workloads. The objective is to build a stable idle time detection platform by investigating the impact of multiple representative methods to pursue a more stable prediction accuracy. The experimental results show that the prediction accuracy of the proposed platform can be stable between 60% and 80%.

Publisher

Association for Computing Machinery (ACM)

Reference32 articles.

1. ARM 2015. ARM A53/A57/T760 investigated - Samsung Galaxy Note 4 Exynos Review. https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6.

2. Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights update method: a meta-algorithm and applications. Theory of computing 8, 1 (2012), 121–164.

3. Short-Term and Long-Term Idle Time Detectors for Reducing Long-Tail Latency in Solid-State Drives

4. Storage Performance Council. 2002. SPC trace file format specification. Storage Performance Council. Retrieved Aug 30,2020 from http://skuld.cs.umass.edu/traces/storage/SPC-Traces.pdf

5. Optimizing Cloud Data Center Energy Efficiency via Dynamic Prediction of CPU Idle Intervals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3