Integer programs with bounded subdeterminants and two nonzeros per row

Author:

Fiorini Samuel1ORCID,Joret Gwenaël2ORCID,Weltge Stefan3ORCID,Yuditsky Yelena2ORCID

Affiliation:

1. Department of Mathematics, Université libre de Bruxelles, Bruxelles, Belgium

2. Computer Science Department, Université libre de Bruxelles, Bruxelles Belgium

3. Technische Universität München, Munchen, Germany

Abstract

We give a strongly polynomial-time algorithm for integer linear programs defined by integer coefficient matrices whose subdeterminants are bounded by a constant and that contain at most two nonzero entries in each row. The core of our approach is the first polynomial-time algorithm for the weighted stable set problem on graphs that do not contain more than k vertex-disjoint odd cycles, where k is any constant. Previously, polynomial-time algorithms were only known for k = 0 (bipartite graphs) and for k = 1. We observe that integer linear programs defined by coefficient matrices with bounded subdeterminants and two nonzeros per column can be also solved in strongly polynomial-time, using a reduction to b -matching.

Publisher

Association for Computing Machinery (ACM)

Reference45 articles.

1. M.A. Armstrong. 1983. Basic Topology. Springer New York, NY.

2. A strongly polynomial algorithm for bimodular integer linear programming

3. Adrian Bock, Yuri Faenza, Carsten Moldenhauer, and Andres Jacinto Ruiz-Vargas. 2014. Solving the stable set problem in terms of the odd cycle packing number. In 34th International Conference on Foundation of Software Technology and Theoretical Computer Science. LIPIcs. Leibniz Int. Proc. Inform., Vol.  29. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 187–198.

4. On Sub-determinants and the Diameter of Polyhedra

5. The stable set problem in graphs with bounded genus and bounded odd cycle packing number

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3