Wang Tiles for image and texture generation

Author:

Cohen Michael F.1,Shade Jonathan2,Hiller Stefan3,Deussen Oliver3

Affiliation:

1. Microsoft Research

2. Wild Tangent

3. Dresden University of Technology

Abstract

We present a simple stochastic system for non-periodically tiling the plane with a small set of Wang Tiles. The tiles may be filled with texture, patterns, or geometry that when assembled create a continuous representation. The primary advantage of using Wang Tiles is that once the tiles are filled, large expanses of non-periodic texture (or patterns or geometry) can be created as needed very efficiently at runtime.Wang Tiles are squares in which each edge is assigned a color. A valid tiling requires all shared edges between tiles to have matching colors. We present a new stochastic algorithm to non-periodically tile the plane with a small set of Wang Tiles at runtime.Furthermore, we present new methods to fill the tiles with 2D texture, 2D Poisson distributions, or 3D geometry to efficiently create at runtime as much non-periodic texture (or distributions, or geometry) as needed. We leverage previous texture synthesis work and adapt it to fill Wang Tiles. We demonstrate how to fill individual tiles with Poisson distributions that maintain their statistical properties when combined. These are used to generate a large arrangement of plants or other objects on a terrain. We show how such environments can be rendered efficiently by pre-lighting the individual Wang Tiles containing the geometry.We also extend the definition of Wang Tiles to include a coding of the tile corners to allow discrete objects to overlap more than one edge. The larger set of tiles provides increased degrees of freedom.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference29 articles.

1. The undecidability of the domino problem;BERGER R.;Memoirs American Mathematical Society,1966

2. An aperiodic set of 13 Wang tiles

Cited by 221 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Poisson-Disk Sampling: Theory and Applications;Encyclopedia of Computer Graphics and Games;2024

2. Wang tiles enable combinatorial design and robot-assisted manufacturing of modular mechanical metamaterials;Extreme Mechanics Letters;2023-11

3. MesoGen: Designing Procedural On-Surface Stranded Mesostructures;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Proceedings;2023-07-23

4. SeamlessGAN: Self-Supervised Synthesis of Tileable Texture Maps;IEEE Transactions on Visualization and Computer Graphics;2023-06-01

5. Preserving the autocovariance of texture tilings using importance sampling;Computer Graphics Forum;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3