Toward a dataflow/von Neumann hybrid architecture

Author:

Iannucci R. A.1

Affiliation:

1. Massachusetts Institute of Technology

Abstract

Dataflow architectures offer the ability to trade program level parallelism in order to overcome machine level latency. Dataflow further offers a uniform synchronization paradigm, representing one end of a spectrum wherein the unit of scheduling is a single instruction. At the opposite extreme are the von Neumann architectures which schedule on a task, or process, basis. This paper examines the spectrum by proposing a new architecture which is a hybrid of dataflow and von Neumann organizations. The analysis attempts to discover those features of the dataflow architecture, lacking in a von Neumann machine, which are essential for tolerating latency and synchronization costs. These features are captured in the concept of a parallel machine language which can be grafted on top of an otherwise traditional von Neumann base. In such an architecture, the units of scheduling, called scheduling quanta , are bound at compile time rather than at instruction set design time. The parallel machine language supports this notion via a large synchronization name space. A prototypical architecture is described, and results of simulation studies are presented. A comparison is made between the MIT Tagged-Token Dataflow machine and the subject machine which presents a model for understanding the cost of synchronization in a parallel environment.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3