Affiliation:
1. Huaqiao University, China
2. Umeå University, Sweden
Abstract
The classic Mixed-Criticality System (MCS) task model is a non-clairvoyance model in which the change of the system behavior is based on the completion of high-criticality tasks while dropping low-criticality tasks in high-criticality mode. In this paper, we simultaneously consider graceful degradation and semi-clairvoyance in MCS. We first propose the analysis for adaptive mixed-criticality with semi-clairvoyance denoted as C-AMC-sem. The so-called semi-clairvoyance refers to the system’s behavior change being revealed at the time that jobs are released. Moreover, we propose a new algorithm based on C-AMC-sem to reduce energy consumption. Finally, we verify the performance of the proposed algorithms via experiments upon synthetically generated tasksets. The experimental results indicate that the proposed algorithms significantly outperform the existing algorithms.
Funder
Natural Science Foundation of Fujian Province of China NSFFJ NoURL
Fundamental Research Funds for the Central Universities FRFCU NoURL
Swedish Research Council VR NoURL
Kempe Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献