Mining large streams of user data for personalized recommendations

Author:

Amatriain Xavier1

Affiliation:

1. Netflix

Abstract

The Netflix Prize put the spotlight on the use of data mining and machine learning methods for predicting user preferences. Many lessons came out of the competition. But since then, Recommender Systems have evolved. This evolution has been driven by the greater availability of different kinds of user data in industry and the interest that the area has drawn among the research community. The goal of this paper is to give an up-to-date overview of the use of data mining approaches for personalization and recommendation. Using Netflix personalization as a motivating use case, I will describe the use of different kinds of data and machine learning techniques. After introducing the traditional approaches to recommendation, I highlight some of the main lessons learned from the Netflix Prize. I then describe the use of recommendation and personalization techniques at Netflix. Finally, I pinpoint the most promising current research avenues and unsolved problems that deserve attention in this domain.

Publisher

Association for Computing Machinery (ACM)

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sequential quantile regression for stream data by least squares;Journal of Econometrics;2024-06

2. AI-Personalization Paradox;Advances in Marketing, Customer Relationship Management, and E-Services;2024-03-01

3. Emerging Organizational Changes in the 21st Century;Quality in the Era of Industry 4.0;2023-12-08

4. Two‐sided markets: The influence of market power on information utilization strategy and welfare;Managerial and Decision Economics;2023-08-17

5. Rating prediction based on the graph Fourier basis and PSD estimation from the perspective of graph signal reconstruction;Expert Systems with Applications;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3