The buried binding and dead binding problems of Lisp 1.5

Author:

Baker Henry G.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Lisp has become the language of choice for many applications such as artificial intelligence programs or symbol manipulation. The original implementation of Lisp 1.5 was a concise, elegant statement of the semantics of the language. Although production Lisp systems have undergone significant development and evolution since Lisp 1.5, including the development of sophisticated compilers, there have been few significant theoretical improvements in the implementations of these systems. Most improvements, such as arrays or shallow-binding, have been made more for the sake of speed than for the sake of storage. A notable exception to this is the technique of tail recursion, which can save more than just stack space.We believe that more can be done to reduce the storage requirements of Lisp programs. Although in many instances, the Lisp programmer can reduce the storage requirements of his program by deleting unneeded pointers as soon as possible, there is nothing he can do about systematic inefficiencies of the Lisp interpreter. This paper addresses itself to two sources of inefficiency in Lisp's variable binding mechanism--one of which is easy to detect---which prevent storage from being garbage collected long after its last reference. Implementations of Lisp which eliminate these situations should result in more economical execution for almost all Lisp programs which use a lot of storage, due to a lighter marking load on the garbage collector.

Publisher

Association for Computing Machinery (ACM)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A “linear logic” Quicksort;ACM SIGPLAN Notices;1994-02

2. Sparse polynomials and linear logic;ACM SIGSAM Bulletin;1993-12

3. Equal rights for functional objects or, the more things change, the more they are the same;ACM SIGPLAN OOPS Messenger;1993-10

4. The Boyer benchmark meets linear logic;ACM SIGPLAN Lisp Pointers;1993-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3