DOCTOR: A Multi-Disease Detection Continual Learning Framework Based on Wearable Medical Sensors

Author:

Li Chia-Hao1ORCID,Jha Niraj K.1ORCID

Affiliation:

1. Electrical and Computer Engineering, Princeton University, Princeton, United States

Abstract

Modern advances in machine learning (ML) and wearable medical sensors (WMSs) in edge devices have enabled ML-driven disease detection for smart healthcare. Conventional ML-driven methods for disease detection rely on customizing individual models for each disease and its corresponding WMS data. However, such methods lack adaptability to distribution shifts and new task classification classes. In addition, they need to be rearchitected and retrained from scratch for each new disease. Moreover, installing multiple ML models in an edge device consumes excessive memory, drains the battery faster, and complicates the detection process. To address these challenges, we propose DOCTOR, a multi-disease detection continual learning (CL) framework based on WMSs. It employs a multi-headed deep neural network (DNN) and a replay-style CL algorithm. The CL algorithm enables the framework to continually learn new missions in which different data distributions, classification classes, and disease detection tasks are introduced sequentially. It counteracts catastrophic forgetting with either a data preservation (DP) method or a synthetic data generation (SDG) module. The DP method preserves the most informative subset of real training data from previous missions for exemplar replay. The SDG module models the probability distribution of the real training data and generates synthetic data for generative replay while retaining data privacy. The multi-headed DNN enables DOCTOR to detect multiple diseases simultaneously based on user WMS data. We demonstrate DOCTOR’s efficacy in maintaining high disease classification accuracy with a single DNN model in various CL experiments. In complex scenarios, DOCTOR achieves 1.43× better average test accuracy, 1.25× better F1-score, and 0.41 higher backward transfer than the naïve fine-tuning framework, with a small model size of less than 350 KB.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3