Synthesis of concurrent programs for an atomic read/write model of computation

Author:

Attie Paul C.1,Emerson E. Allen2

Affiliation:

1. Northeastern University and MIT Laboratory for Computer Science

2. The University of Texas at Austin

Abstract

Methods for mechanically synthesizing concurrent programs for temporal logic specifications have been proposed by Emerson and Clarke and by Manna and Wolper. An important advantage of these synthesis methods is that they obviate the need to manually compose a program and manually construct a proof of its correctness. A serious drawback of these methods in practice, however, is that they produce concurrent programs for models of computation that are often unrealistic, involving highly centralized system architecture (Manna and Wolper), processes with global information about the system state (Emerson and Clarke), or reactive modules that can read all of their inputs in one atomic step (Anuchitanukul and Manna, and Pnueli and Rosner). Even simple synchronization protocols based on atomic read/write primitives such as Peterson's solution to the mutual exclusion problem have remained outside the scope of practical mechanical synthesis methods. In this paper, we show how to mechanically synthesize in more realistic computational models solutions to synchronization problems. We illustrate the method by synthesizing Peterson's solution to the mutual exclusion problem.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference27 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model and Program Repair via Group Actions;Lecture Notes in Computer Science;2023

2. Model and Program Repair via SAT Solving;ACM Transactions on Embedded Computing Systems;2018-03-31

3. LCL Problems on Grids;Proceedings of the ACM Symposium on Principles of Distributed Computing;2017-07-25

4. Synthesis of large dynamic concurrent programs from dynamic specifications;Formal Methods in System Design;2016-04

5. Fast, Flexible, and Minimal CTL Synthesis via SMT;Computer Aided Verification;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3