Positional Encoding-based Resident Identification in Multi-resident Smart Homes

Author:

Song Zhiyi1ORCID,Chaki Dipankar1ORCID,Lakhdari Abdallah1ORCID,Bouguettaya Athman1ORCID

Affiliation:

1. The University of Sydney, Australia

Abstract

We propose a novel resident identification framework to identify residents in a multi-occupant smart environment. The proposed framework employs a feature extraction model based on the concepts of positional encoding. The feature extraction model considers the locations of homes as a graph. We design a novel algorithm to build such graphs from layout maps of smart environments. The Node2Vec algorithm is used to transform the graph into high-dimensional node embeddings. A Long Short-Term Memory model is introduced to predict the identities of residents using temporal sequences of sensor events with the node embeddings. Extensive experiments show that our proposed scheme effectively identifies residents in a multi-occupant environment. Evaluation results on two real-world datasets demonstrate that our proposed approach achieves 94.5% and 87.9% accuracy, respectively.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference59 articles.

1. 2018. SmartThings: One Simple Home System. Retrieved April 5 2202 from http://www.smartthings.com

2. Identification of Wearable Devices with Bluetooth

3. A review of smart homes in healthcare;Amiribesheli Mohsen;J. Ambient Intell. Human. Compu.,2015

4. The internet of things: A survey;Atzori Luigi;Comput. Netw.,2010

5. Sumathi Balakrishnan, Hemalata Vasudavan, and Raja Kumar Murugesan. 2018. Smart home technologies: A preliminary review. In Proceedings of the 6th International Conference on Information Technology: IoT and Smart City (ICIT ’18). Association for Computing Machinery, 120–127. DOI:10.1145/3301551.3301575

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3