Prepare: P owe r -Awar e A p proximate Re a l-time Task Scheduling for Ene r gy-Adaptiv e QoS Maximization

Author:

Chakraborty Shounak1,Saha Sangeet2,Själander Magnus3,Mcdonald-Maier Klaus2

Affiliation:

1. Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

2. Embedded and Intelligent Systems Laboratory, University of Essex, Colchester, UK

3. Department of Computer Science, Norwegian University of Science and Technology (NTNU), Norway

Abstract

Achieving high result-accuracy in approximate computing (AC) based real-time applications without violating power constraints of the underlying hardware is a challenging problem. Execution of such AC real-time tasks can be divided into the execution of the mandatory part to obtain a result of acceptable quality, followed by a partial/complete execution of the optional part to improve accuracy of the initially obtained result within the given time-limit. However, enhancing result-accuracy at the cost of increased execution length might lead to deadline violations with higher energy usage. We propose Prepare , a novel hybrid offline-online approximate real-time task-scheduling approach, that first schedules AC-based tasks and determines operational processing speeds for each individual task constrained by system-wide power limit, deadline, and task-dependency. At runtime, by employing fine-grained DVFS, the energy-adaptive processing speed governing mechanism of Prepare reduces processing speed during each last level cache miss induced stall and scales up the processing speed once the stall finishes to a higher value than the predetermined one. To ensure on-chip thermal safety, this higher processing speed is maintained only for a short time-span after each stall, however, this reduces execution times of the individual task and generates slacks. Prepare exploits the slacks either to enhance result-accuracy of the tasks, or to improve thermal and energy efficiency of the underlying hardware, or both. With a 70 - 80% workload, Prepare offers 75% result-accuracy with its constrained scheduling, which is enhanced by 5.3% for our benchmark based evaluation of the online energy-adaptive mechanism on a 4-core based homogeneous chip multi-processor, while meeting the deadline constraint. Overall, while maintaining runtime thermal safety, Prepare reduces peak temperature by up to 8.6 °C for our baseline system. Our empirical evaluation shows that constrained scheduling of Prepare outperforms a state-of-the-art scheduling policy, whereas our runtime energy-adaptive mechanism surpasses two current DVFS based thermal management techniques.

Funder

Marie Curie Individual Fellowship (MSCA-IF), EU

Engineering and Physical Sciences Research Council (EPSRC), UK

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TREAFET: Temperature-Aware Real-Time Task Scheduling for FinFET based Multicores;ACM Transactions on Embedded Computing Systems;2024-06-29

2. DELICIOUS: Deadline-Aware Approximate Computing in Cache-Conscious Multicore;IEEE Transactions on Parallel and Distributed Systems;2023-02-01

3. Exact and Approximate Tasks Computation in IoT Networks;IEEE Internet of Things Journal;2023

4. Optimal IC Task Mapping to Maximize QoS on Heterogeneous Multicore Systems;IEEE Transactions on Circuits and Systems II: Express Briefs;2023

5. Approximation-aware Task Deployment on Heterogeneous Multi-core Platforms with DVFS;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3