Dynamic Bicycle Dispatching of Dockless Public Bicycle-sharing Systems Using Multi-objective Reinforcement Learning

Author:

Chen Jianguo1,Li Kenli1,Li Keqin2,Yu Philip S.3,Zeng Zeng4

Affiliation:

1. Hunan University, Agency for Science Technology and Research, Singapore

2. Hunan University and State University of New York, New Paltz, NY, USA

3. University of Illinois at Chicago, Chicago, IL, USA

4. Agency for Science Technology and Research, Singapore

Abstract

As a new generation of Public Bicycle-sharing Systems (PBS), the Dockless PBS (DL-PBS) is an important application of cyber-physical systems and intelligent transportation. How to use artificial intelligence to provide efficient bicycle dispatching solutions based on dynamic bicycle rental demand is an essential issue for DL-PBS. In this article, we propose MORL-BD, a dynamic bicycle dispatching algorithm based on multi-objective reinforcement learning to provide the optimal bicycle dispatching solution for DL-PBS. We model the DL-PBS system from the perspective of cyber-physical systems and use deep learning to predict the layout of bicycle parking spots and the dynamic demand of bicycle dispatching. We define the multi-route bicycle dispatching problem as a multi-objective optimization problem by considering the optimization objectives of dispatching costs, dispatch truck's initial load, workload balance among the trucks, and the dynamic balance of bicycle supply and demand. On this basis, the collaborative multi-route bicycle dispatching problem among multiple dispatch trucks is modeled as a multi-agent and multi-objective reinforcement learning model. All dispatch paths between parking spots are defined as state spaces, and the reciprocal of dispatching costs is defined as a reward. Each dispatch truck is equipped with an agent to learn the optimal dispatch path in the dynamic DL-PBS network. We create an elite list to store the Pareto optimal solutions of bicycle dispatch paths found in each action, and finally get the Pareto frontier. Experimental results on the actual DL-PBS show that compared with existing methods, MORL-BD can find a higher quality Pareto frontier with less execution time.

Funder

National Key R&D Program of China

National Outstanding Youth Science Program of National Natural Science Foundation of China

Program of National Natural Science Foundation of China

International (Regional) Cooperation and Exchange Program of National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

International Postdoctoral Exchange Fellowship Program

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3