Affiliation:
1. Zhejiang University, Hangzhou, China
Abstract
The smart city is an increasingly popular concept when it comes to urban development. In a smart city, numerous sensor services are generated by IoT sensors in a distributed manner, requiring proper management and effective interaction to guarantee the connectivity of different regions. However, the sensitive nature of sensor data raises concerns over joining public cloud centers or edge servers, despite assurances of their reliability from providers. Local deployment and maintenance of sensor services may cause these service providers to become ”data isolated islands”, hindering the construction process of smart city. This paper proposes a distributed trustworthy sensor service network architecture named DTSSN to support the building of a fully distributed sensor service network. The proposed network architecture operates through the collaboration of two core devices, the sensor service switch and router, to effectively enable the registration, discovery, invocation, transaction, and monitoring of cross-region sensor services. Then, a lightweight trustworthy transaction mechanism based on blockchain is proposed to realize SLA-based automatic service transaction while reducing potential risks in the service network. Comparative analysis and simulation experiments validate the effectiveness of the DTSSN architecture in terms of scalability, availability, and trustworthiness, underscoring its potential in advancing smart city development and governance.
Publisher
Association for Computing Machinery (ACM)