Blox: A Modular Toolkit for Deep Learning Schedulers

Author:

Agarwal Saurabh1ORCID,Phanishayee Amar2ORCID,Venkataraman Shivaram3ORCID

Affiliation:

1. University of Wisconsin-Madison and Microsoft Research Intern

2. Microsoft Research

3. University of Wisconsin-Madison

Publisher

ACM

Reference60 articles.

1. Understanding Training Efficiency of Deep Learning Recommendation Models at Scale

2. George Amvrosiadis, Jun Woo Park, Gregory R Ganger, Garth A Gibson, Elisabeth Baseman, and Nathan DeBardeleben. Bigger, longer, fewer: what do cluster jobs look like outside google, 2017.

3. Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian, Ming Wu, and Lidong Zhou. Apollo: Scalable and coordinated scheduling for {Cloud-Scale} computing. In 11th USENIX symposium on operating systems design and implementation (OSDI 14), pages 285--300, 2014.

4. Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. arXiv, arXiv/2005.14165, 2020.

5. Balancing efficiency and fairness in heterogeneous GPU clusters for deep learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3