Cycle detection and correction

Author:

Amir Amihood1,Eisenberg Estrella2,Levy Avivit3,Porat Ely2,Shapira Natalie2

Affiliation:

1. Bar-Ilan University and Johns Hopkins University, Israel

2. Bar-Ilan University, Israel

3. Shenkar College and CRI, University of Haifa, Haifa, Israel

Abstract

Assume that a natural cyclic phenomenon has been measured, but the data is corrupted by errors. The type of corruption is application-dependent and may be caused by measurements errors, or natural features of the phenomenon. We assume that an appropriate metric exists, which measures the amount of corruption experienced. This article studies the problem of recovering the correct cycle from data corrupted by various error models, formally defined as the period recovery problem . Specifically, we define a metric property which we call pseudolocality and study the period recovery problem under pseudolocal metrics. Examples of pseudolocal metrics are the Hamming distance, the swap distance, and the interchange (or Cayley) distance. We show that for pseudolocal metrics, periodicity is a powerful property allowing detecting the original cycle and correcting the data, under suitable conditions. Some surprising features of our algorithm are that we can efficiently identify the period in the corrupted data, up to a number of possibilities logarithmic in the length of the data string, even for metrics whose calculation is NP-hard . For the Hamming metric, we can reconstruct the corrupted data in near-linear time even for unbounded alphabets. This result is achieved using the property of separation in the self-convolution vector and Reed-Solomon codes. Finally, we employ our techniques beyond the scope of pseudo-local metrics and give a recovery algorithm for the non-pseudolocal Levenshtein edit metric.

Funder

National Science Foundation

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On suffix tree detection;Theoretical Computer Science;2024-10

2. On Suffix Tree Detection;String Processing and Information Retrieval;2023

3. Multidimensional Period Recovery;Algorithmica;2022-02-14

4. Multidimensional Period Recovery;String Processing and Information Retrieval;2020

5. Approximate cover of strings;Theoretical Computer Science;2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3