Using Machine Learning to Support Qualitative Coding in Social Science

Author:

Chen Nan-Chen1ORCID,Drouhard Margaret1,Kocielnik Rafal1,Suh Jina1,Aragon Cecilia R.1

Affiliation:

1. University of Washington, USA

Abstract

Machine learning (ML) has become increasingly influential to human society, yet the primary advancements and applications of ML are driven by research in only a few computational disciplines. Even applications that affect or analyze human behaviors and social structures are often developed with limited input from experts outside of computational fields. Social scientists—experts trained to examine and explain the complexity of human behavior and interactions in the world—have considerable expertise to contribute to the development of ML applications for human-generated data, and their analytic practices could benefit from more human-centered ML methods. Although a few researchers have highlighted some gaps between ML and social sciences [51, 57, 70], most discussions only focus on quantitative methods. Yet many social science disciplines rely heavily on qualitative methods to distill patterns that are challenging to discover through quantitative data. One common analysis method for qualitative data is qualitative coding . In this article, we highlight three challenges of applying ML to qualitative coding. Additionally, we utilize our experience of designing a visual analytics tool for collaborative qualitative coding to demonstrate the potential in using ML to support qualitative coding by shifting the focus to identifying ambiguity. We illustrate dimensions of ambiguity and discuss the relationship between disagreement and ambiguity. Finally, we propose three research directions to ground ML applications for social science as part of the progression toward human-centered machine learning.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3