Non-relational Databases on FPGAs: Survey, Design Decisions, Challenges

Author:

Dann Jonas1ORCID,Ritter Daniel1ORCID,Fröning Holger2ORCID

Affiliation:

1. SAP SE, Germany and Heidelberg University, Walldorf, Germany

2. Heidelberg University, Germany

Abstract

Non-relational database systems (NRDS) such as graph and key-value have gained attention in various trending business and analytical application domains. However, while CPU performance scaling becomes increasingly more difficult, field-programmable gate arrays (FPGA)- accelerated NRDS have not been systematically studied yet. This survey describes and categorizes the inherent differences and non-trivial tradeoffs of relevant NRDS classes (i.e., graph, document, key-value, and wide-column) as well as their commonalities in the context of common design decisions when building such a system with FPGAs. In particular, we highlight accelerator tasks, FPGA placement, accelerator design patterns, and justification for using FPGAs in different system contexts. We close with open research and engineering challenges to outline the future of FPGA-accelerated NRDS.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference189 articles.

1. Consistency tradeoffs in modern distributed database system design: CAP is only part of the story;Abadi Daniel;IEEE Comput.,2012

2. Abdessalem Abidi, Belgacem Bouallegue, and Fatma Kahri. 2014. Implementation of elliptic curve digital signature algorithm (ECDSA). In GSCIT. 1–6.

3. Matthew Agostini, Francis O’Brien, and Tarek S. Abdelrahman. 2020. Balancing graph processing workloads using work stealing on heterogeneous CPU-FPGA systems. In ICPP. ACM, 50:1–50:12.

4. Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida, Kaan Kara, Dario Korolija, David Sidler, and Zeke Wang. 2020. Tackling hardware/software co-design from a database perspective. In CIDR, Online Proceedings.

5. Austin Appleby. 2016. SMHasher. Retrieved July 20 2022 from https://github.com/aappleby/smhasher.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3