UETOPSIS: A Data-Driven Intelligence Approach to Security Decisions for Edge Computing in Smart Cities

Author:

Xiao Lijun1,Han Dezhi1,Li Kuan-Ching2,Khan Muhammad Khurram3

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai, China

2. Dept. of Computer Science and Information Engineering, Providence University, Taichung, Taiwan

3. Center of Excellence in Information Assurance, King Saud University, Riyadh, Kingdom of Saudi Arabia

Abstract

Despite considerable technological advances for smart cities, they still face problems such as instability of cloud server connection, insecurity during data transmission, and slight deficiencies in TCP/IP network architecture. To address such issues, we propose a data-driven intelligence approach to security decisions under Named Data Networking (NDN) architecture for edge computing, taking into consideration factors that impact device entry in smart cities, such as device performance, load, Bluetooth signal strength, and scan frequency. Despite existing techniques for Order Preference by Similarity to Ideal Solution (TOPSIS)-based on entropy weights methods are improved and applied, there exist unstable decision results. Due to this, we propose a technique for Order Preference by Similarity to Ideal Solution (TOPSIS)-based on utility function and entropy weights, named UETOPSIS, where the corresponding utility function is applied according to the influence of each attribute on the decision, ensuring the stability of the ranking of decision results. We rely on an entropy-based weights mechanism to select a suitable master controller for the design of the multi-control protocol in the smart city system, and utilize a utility function to calculate the attribute values and then combine the normalized attribute values of utility numbers, starting by analyzing the main work of the controllers. Lastly, a prototype is developed for performance evaluation purposes. Experimental evaluation and analysis show that the proposed work has better authenticity and reliability than existing works and can reduce the workload of edge computing devices when forwarding data, with stability 24.7% higher than TOPSIS, significantly improving the performance and stability of system fault tolerance and reliability in smart cities, as the second-ranked controller can efficiently take over the work when a central controller fails or damaged.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3