Automatic Sublining for Efficient Sparse Memory Accesses

Author:

Heirman Wim1ORCID,Eyerman Stijn1,Bois Kristof Du1,Hur Ibrahim2

Affiliation:

1. Intel Corporation, Belgium

2. Intel Corporation, USA

Abstract

Sparse memory accesses, which are scattered accesses to single elements of a large data structure, are a challenge for current processor architectures. Their lack of spatial and temporal locality and their irregularity makes caches and traditional stream prefetchers useless. Furthermore, performing standard caching and prefetching on sparse accesses wastes precious memory bandwidth and thrashes caches, deteriorating performance for regular accesses. Bypassing prefetchers and caches for sparse accesses, and fetching only a single element (e.g., 8 B) from main memory (subline access), can solve these issues. Deciding which accesses to handle as sparse accesses and which as regular cached accesses, is a challenging task, with a large potential impact on performance. Not only is performance reduced by treating sparse accesses as regular accesses, not caching accesses that do have locality also negatively impacts performance by significantly increasing their latency and bandwidth consumption. Furthermore, this decision depends on the dynamic environment, such as input set characteristics and system load, making a static decision by the programmer or compiler suboptimal. We propose the Instruction Spatial Locality Estimator ( ISLE ), a hardware detector that finds instructions that access isolated words in a sea of unused data. These sparse accesses are dynamically converted into uncached subline accesses, while keeping regular accesses cached. ISLE does not require modifying source code or binaries, and adapts automatically to a changing environment (input data, available bandwidth, etc.). We apply ISLE to a graph analytics processor running sparse graph workloads, and show that ISLE outperforms the performance of no subline accesses, manual sublining, and prior work on detecting sparse accesses.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference43 articles.

1. Sriram Aananthakrishnan Nesreen K. Ahmed Vincent Cave Marcelo Cintra Yigit Demir Kristof Du Bois Stijn Eyerman Joshua B. Fryman Ivan Ganev Wim Heirman Hans-Christian Hoppe Jason Howard Ibrahim Hur MidhunChandra Kodiyath Samkit Jain Daniel S. Klowden Marek M. Landowski Laurent Montigny Ankit More Przemyslaw Ossowski Robert Pawlowski Nick Pepperling Fabrizio Petrini Mariusz Sikora Balasubramanian Seshasayee Shaden Smith Sebastian Szkoda Sanjaya Tayal2020. PIUMA: Programmable Integrated Unified Memory Architecture. arxiv:cs.AR/2010.06277 Sriram Aananthakrishnan Nesreen K. Ahmed Vincent Cave Marcelo Cintra Yigit Demir Kristof Du Bois Stijn Eyerman Joshua B. Fryman Ivan Ganev Wim Heirman Hans-Christian Hoppe Jason Howard Ibrahim Hur MidhunChandra Kodiyath Samkit Jain Daniel S. Klowden Marek M. Landowski Laurent Montigny Ankit More Przemyslaw Ossowski Robert Pawlowski Nick Pepperling Fabrizio Petrini Mariusz Sikora Balasubramanian Seshasayee Shaden Smith Sebastian Szkoda Sanjaya Tayal2020. PIUMA: Programmable Integrated Unified Memory Architecture. arxiv:cs.AR/2010.06277

2. Advanced Micro Devices Inc.2013. High Bandwidth Memory (HBM) DRAM. Advanced Micro Devices Inc.2013. High Bandwidth Memory (HBM) DRAM.

3. An Event-Triggered Programmable Prefetcher for Irregular Workloads

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3