Active learning with semi-automatic annotation for extractive speech summarization

Author:

Zhang Justin Jian1,Fung Pascale2

Affiliation:

1. Dongguan University of Technology, Dongguan, China and The Hong Kong University of Science and Technology

2. The Hong Kong University of Science and Technology

Abstract

We propose using active learning for extractive speech summarization in order to reduce human effort in generating reference summaries. Active learning chooses a selective set of samples to be labeled. We propose a combination of informativeness and representativeness criteria for selection. We further propose a semi-automatic method to generate reference summaries for presentation speech by using Relaxed Dynamic Time Warping (RDTW) alignment between presentation speech and its accompanied slides. Our summarization results show that the amount of labeled data needed for a given summarization accuracy can be reduced by more than 23% compared to random sampling.

Funder

Innovation and Technology Commmission

International Center for Advanced Communication Technologies (InterACT) at HKUST Funding

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Youtube Transcript Synthesis;2023 5th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N);2023-12-15

2. Speech Summarization for Tamil Language;Intelligent Speech Signal Processing;2019

3. Automatic Annotation of Voice Forum Content for Rural Users and Evaluation of Relevance;Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies;2018-06-20

4. Generic speech summarization of transcribed lecture videos: Using tags and their semantic relations;Journal of the Association for Information Science and Technology;2014-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3