Handling Imbalance and Limited Data in Thyroid Ultrasound and Diabetic Retinopathy Datasets Using Discrete Levy Flights Grey Wolf Optimizer Based Random Forest for Robust Medical Data Classification

Author:

Aswal Shobha1ORCID,Ahuja Neelu Jyothi2ORCID,Mehra Ritika3ORCID

Affiliation:

1. Research Scholar, Computer Science and Engineering, VMSB Uttarakhand Technical University, Dehradun, India

2. School of Computer Science, University of Petroleum and Energy Studies, Dehradun, India

3. School of Computer Science and Engineering, Dev Bhoomi Uttarakhand University, Dehradun, India

Abstract

In the field of disease diagnosis, medical image classification faces an inherent challenge due to various factors involving data imbalance, image quality variability, annotation variability, and limited data availability and data representativeness. Such challenges affect the algorithm's classification ability on the medical images in an adverse way, which leads to biased model outcomes and inaccurate interpretations. In this paper, a novel Discrete Levy Flight Grey Wolf Optimizer (DLFGWO) is combined with the Random Forest (RF) classifier to address the above limitations on the biomedical datasets and to achieve better classification rate. The DLFGWO-RF resolves the image quality variability in ultrasound images and limits the inaccuracies on classification using RF by handling the incomplete and noisy data. The sheer focus on the majority class may lead to unequal distribution of classes and thus leads to data imbalance. The DLFGWO balances such distribution by leveraging grey wolves and its exploration and exploitation capabilities are improved using Discrete Levy Flight (DLF). It further optimizes the classifier's performance to achieve balanced classification rate. DLFGWO-RF is designed to perform classification even on limited datasets, thereby the requirement of numerous expert annotations can thus be reduced. In diabetic retinopathy grading, the DLFGWO-RF reduces disagreements in annotation variability using subjective interpretations. However, the representativeness of the diabetic retinopathy dataset fails to capture the entire population diversity, which limits the generalization ability of the proposed DLFGWO-RF. Thus, fine-tuning of RF can robustly adapt to the subgroups in the dataset, enhancing its overall performance. The experiments are conducted on two widely used medical image datasets to test the efficacy of the model. The experimental results show that the DLFGWO-RF classifier achieves improved classification accuracy between 90-95%, which outperforms the existing techniques for various imbalanced datasets.

Publisher

Association for Computing Machinery (ACM)

Reference28 articles.

1. Deep learning for medical image processing: Overview, challenges and the future;Razzak M. I.;Classification in BioApps: Automation of Decision Making,2018

2. Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., ... & Gillies, R. J. (2012). Radiomics: the process and the challenges. Magnetic resonance imaging, 30(9), 1234-1248.

3. Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from imbalanced data sets (Vol. 10, pp. 978-3). Cham: Springer.

4. FSVM-CIL: Fuzzy Support Vector Machines for Class Imbalance Learning

5. What Disease Does This Patient Have? A Large-Scale Open Domain Question Answering Dataset from Medical Exams

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3