Duty-cycle optimization for IEEE 802.15.4 wireless sensor networks

Author:

Park Pangun1,Ergen Sinem Coleri2,Fischione Carlo3,Sangiovanni-Vincentelli Alberto1

Affiliation:

1. University of California, Berkeley, CA

2. Koc University, Istanbul, Turkey

3. KTH, Royal Institute of Technology, Stockholm, Sweden

Abstract

Most applications of wireless sensor networks require reliable and timely data communication with maximum possible network lifetime under low traffic regime. These requirements are very critical especially for the stability of wireless sensor and actuator networks. Designing a protocol that satisfies these requirements in a network consisting of sensor nodes with traffic pattern and location varying over time and space is a challenging task. We propose an adaptive optimal duty-cycle algorithm running on top of the IEEE 802.15.4 medium access control to minimize power consumption while meeting the reliability and delay requirements. Such a problem is complicated because simple and accurate models of the effects of the duty cycle on reliability, delay, and power consumption are not available. Moreover, the scarce computational resources of the devices and the lack of prior information about the topology make it impossible to compute the optimal parameters of the protocols. Based on an experimental implementation, we propose simple experimental models to expose the dependency of reliability, delay, and power consumption on the duty cycle at the node and validate it through extensive experiments. The coefficients of the experimental-based models can be easily computed on existing IEEE 802.15.4 hardware platforms by introducing a learning phase without any explicit information about data traffic, network topology, and medium access control parameters. The experimental-based model is then used to derive a distributed adaptive algorithm for minimizing the power consumption while meeting the reliability and delay requirements in the packet transmission. The algorithm is easily implementable on top of the IEEE 802.15.4 medium access control without any modifications of the protocol. An experimental implementation of the distributed adaptive algorithm on a test bed with off-the-shelf wireless sensor devices is presented. The experimental performance of the algorithms is compared to the existing solutions from the literature. The experimental results show that the experimental-based model is accurate and that the proposed adaptive algorithm attains the optimal value of the duty cycle, maximizing the lifetime of the network while meeting the reliability and delay constraints under both stationary and transient conditions. Specifically, even if the number of devices and their traffic configuration change sharply, the proposed adaptive algorithm allows the network to operate close to its optimal value. Furthermore, for Poisson arrivals, the duty-cycle protocol is modeled as a finite capacity queuing system in a star network. This simple analytical model provides insights into the performance metrics, including the reliability, average delay, and average power consumption of the duty-cycle protocol.

Funder

Seventh Framework Programme

Division of Computer and Network Systems

Vetenskapsrädet

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3