Roadmap for edge AI

Author:

Ding Aaron Yi1,Peltonen Ella2,Meuser Tobias3,Aral Atakan4,Becker Christian5,Dustdar Schahram6,Hiessl Thomas6,Kranzlmüller Dieter7,Liyanage Madhusanka8,Maghsudi Setareh9,Mohan Nitinder10,Ott Jörg10,Rellermeyer Jan S.11,Schulte Stefan12,Schulzrinne Henning13,Solmaz Gürkan14,Tarkoma Sasu15,Varghese Blesson16,Wolf Lars17

Affiliation:

1. Delft University of Technology

2. University of Oulu

3. TU Darmstadt

4. University of Vienna

5. University of Mannheim

6. TU Wien

7. LMU Munich

8. University Collage Dublin

9. University of Tübingen

10. TU Munich

11. Leibniz University Hannover, Delft University of Technology

12. Hamburg University of Technology

13. Columbia University

14. NEC Labs Europe

15. University of Helsinki

16. University of St Andrews

17. TU Braunschweig

Abstract

Based on the collective input of Dagstuhl Seminar (21342), this paper presents a comprehensive discussion on AI methods and capabilities in the context of edge computing, referred as Edge AI. In a nutshell, we envision Edge AI to provide adaptation for data-driven applications, enhance network and radio access, and allow the creation, optimisation, and deployment of distributed AI/ML pipelines with given quality of experience, trust, security and privacy targets. The Edge AI community investigates novel ML methods for the edge computing environment, spanning multiple sub-fields of computer science, engineering and ICT. The goal is to share an envisioned roadmap that can bring together key actors and enablers to further advance the domain of Edge AI.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference12 articles.

1. Computational Models of Human Decision-Making with Application to the Internet of Everything

2. Distributed Task Management in Cyber-Physical Systems: How to Cooperate Under Uncertainty?

3. 2020. White paper on 6G drivers and the UN SDGs. 6G RESEARCH VISIONS;Matinmikko-Blue Marja;NO.,2020

4. Pruning Edge Research with Latency Shears

5. Peltonen and et al. 2020. 6G white paper on edge intelligence. 6G RESEARCH VISIONS;Ella;NO.,2020

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complexity-Driven Model Compression for Resource-Constrained Deep Learning on Edge;IEEE Transactions on Artificial Intelligence;2024-08

2. Revisiting Edge AI: Opportunities and Challenges;IEEE Internet Computing;2024-07

3. Driving Towards Efficiency: Adaptive Resource-Aware Clustered Federated Learning in Vehicular Networks;2024 22nd Mediterranean Communication and Computer Networking Conference (MedComNet);2024-06-11

4. Defining a Reference Architecture for Edge Systems in Highly-Uncertain Environments;2024 IEEE 21st International Conference on Software Architecture Companion (ICSA-C);2024-06-04

5. Adaptive approximate computing in edge AI and IoT applications: A review;Journal of Systems Architecture;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3