Analyzing and Predicting Spatial Crime Distribution Using Crowdsourced and Open Data

Author:

Belesiotis Alexandros1,Papadakis George2,Skoutas Dimitrios1

Affiliation:

1. Information Management Systems Institute, R.C. Athena, Marousi, Greece

2. Department of Informatics 8 Telecommunications, University of Athens, Panepistimiopolis, Ilisia, Athens, Greece

Abstract

Data analytics has an ever increasing impact on tackling various societal challenges. In this article, we investigate how data from several heterogeneous online sources can be used to discover insights and make predictions about the spatial distribution of crime in large urban environments. A series of important research questions is addressed, following a purely data-driven approach and methodology. First, we examine how useful different types of data are for the task of crime levels prediction, focusing especially on how prediction accuracy can be improved by combining data from multiple information sources. To that end, we not only investigate prediction accuracy across all individual areas studied, but also examine how these predictions affect the accuracy of identified crime hotspots. Then, we look into individual features, aiming to identify and quantify the most important factors. Finally, we drill down to different crime types, elaborating on how the prediction accuracy and the importance of individual features vary across them. Our analysis involves six different datasets, from which more than 3,000 features are extracted, filtered, and used to learn models for predicting crime rates across 14 different crime categories. Our results indicate that combining data from multiple information sources can significantly improve prediction accuracy. They also highlight which features affect prediction accuracy the most, as well as for which particular crime categories the predictions are more accurate.

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modelling and Simulation,Information Systems,Signal Processing

Reference34 articles.

1. Fine-grained population estimation

2. Once Upon a Crime

3. Fuzzy association rule mining for community crime pattern discovery

4. Risk terrain modeling for spatial risk assessment;Caplan Joel M.;Cityscape,2015

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3